

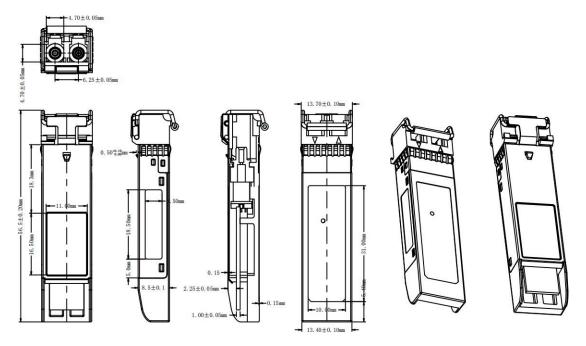
1.25 Gb/s SFP 1550nm 160km Transceiver

SFP Series

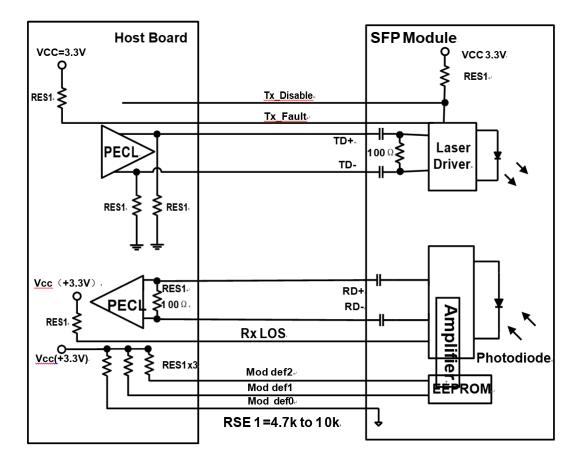
- Operating Data Rate up to 1.25Gbps
- 1550nm DFB Laser Transmitter
- 160km with 9/125 μm SMF
- Single 3.3V Power Supply
- Hot-Pluggable SFP Footprint
 Duplex LC Connector Interface
- Class 1 FDA and IEC60825-1 Laser
 Safety Compliant
- Support Commercial and Industrial Temperature
- Compliant with MSA SFP
 Specification
- Compliant with SFF-8472
- ROHS 2.0 compatible

ASCENT'S SFP-AG-LP-51-160 Small Form Factor Pluggable (SFP) transceivers are flexible solution as an interface for switches, routers, servers, and other optical links. They are compatible with the Small Form Factor Pluggable Multi-Sourcing Agreement (MSA).

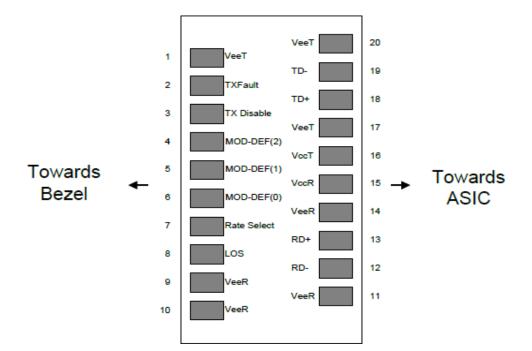
The transceiver consists of five sections: the LD driver, the limiting amplifier, the digital diagnostic monitor, the DFB laser and the PIN photodetector. The module data link up to 160 km in $9/125 \,\mu$ m single mode fiber.


The optical output can be disabled by a TTL logic high-level input of Tx Disable, and the system also can disable the module via I2C. Tx Fault is provided to indicate that degradation of the laser. Loss of signal (LOS) output is provided to indicate the loss of an input optical signal of receiver or the link status with partner. The system can also get the LOS (or Link)/Disable/Fault information via I2C register access.

Key Features —


- Operating Data Rate up to 1.25Gbps
- 1550nm DFB Laser Transmitter
- 160km with 9/125 μm SMF
- Single 3.3V Power Supply
- Hot-Pluggable SFP Footprint Duplex LC Connector Interface
- Class 1 FDA and IEC60825-1 Laser Safety Compliant
- Operating Temperature: Standard: 0°C to +70°C, Industrial: -40°C to +85°C
- Applications: Gigabit Ethernet Switches and Routers, Fiber Channel Switch Infrastructure, STM-4 and other optical links
- Compliant with MSA SFP Specification
- Compliant with SFF-8472
- ROHS 2.0 compatible

Mechanical Dimensions -



Recommend Circuit Schematic -

Pin Map and Description

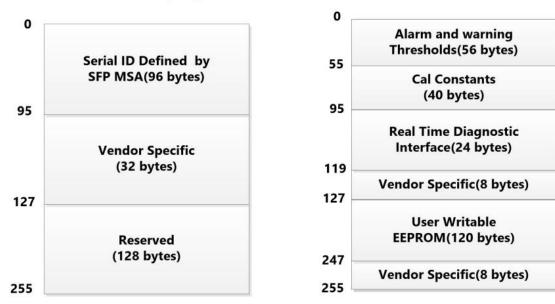
1.25G SFP 1550nm 160km Transceiver

Pin	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	5)
2	TX Fault	Transmitter Fault Indication	3	1)
3	TX Disable	Transmitter Disable	3	2) Module disables on high or open
4	MOD-DEF2	Module Definition 2	3	 2 wire serial ID interface.
5	MOD-DEF1	Module Definition 1	3	 2 wire serial ID interface.
6	MOD-DEF0	Module Definition 0	3	3) Grounded within the module.
7	Rate Select	Not Connect	3	Function not available
8	LOS	Loss of Signal	3	4)
9	VeeR	Receiver Ground	1	5)
10	VeeR	Receiver Ground	1	5)
11	VeeR	Receiver Ground	1	5)
12	RD-	Inv. Received Data Out	3	6)
13	RD+	Received Data Out	3	7)
14	VeeR	Receiver Ground	1	5)
15	VccR	Receiver Power	2	7) 3.3 ± 5%
16	VccT	Transmitter Power	2	7) 3.3 ± 5%
17	VeeT	Transmitter Ground	1	5)
18	TD+	Transmit Data In	3	8)
19	TD-	Inv. Transmit Data In	3	8)
20	VeeT	Transmitter Ground	1	5)

NOTES:

- TX Fault is an open collector/drain output, which should be pulled up with a 4.7 10KΩ resistor on the host board. Pull up voltage between 2.0V and VccT/R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 2. TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7 10K Ω resistor. Its states are:
 - Low (0 –0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0 – 3.465V): Transmitter Disabled Open: Transmitter Disabled
- 3. Mod-Def 0, 1, 2. These are the module definition pins. They should be pulled up with a 4.7 10K Ω resistor on the host board. The pull-up voltage shall be VccT or VccR.
 - Mod-Def 0 is grounded by the module to indicate that the module is present;
 - Mod-Def 1 is the clock line of two wire serial interface for serial ID;
 - Mod-Def 2 is the data line of two wire serial interface for serial ID.
- 4. LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7 10K\Omega$ resistor. Pull up voltage between 2.0V and VccT/R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.
- 5. VeeR and VeeT may be internally connected within the SFP module.
- 6. RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential Lines

which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines w ill be between 400 and 2000mV differential (200 – 1000mV single ended) when properly terminated.


- 7. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V±5% at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an in rush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.
- TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100 differential terminations inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 400 – 2000mV (200 – 1000mV single-ended).

EEPROM

The serial interface uses the 2-wire serial CMOS EEPROM protocol defined. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segm ents of the EEPROM that are not write protected within the SFP transceiver. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA) is Bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following. For detail EEPROM information please refer to the related document of SFF8472 Rev 10.2.

2 wire address 1010000X (A2h)

Specifications -

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Maximum Supply Voltage	Vcc	-0.5	3.6	V
Operating Relative Humidity	/ RH		95	%

Notes:

1. Exceeding any one of these values may destroy the device immediately.

Recommended Operating Conditions

Parameter		Symbol	Min.	Тур.	Max.	Unit	Note
Operating C	Operating Case Temperature		0 -40		+70 +85	°C °C	SFP-AG-LP-51-160 SFP-AGLP-51-160A
	Power Supply Voltage Power Supply Current		3.15	3.3 1.25	3.45 300	V mA Gbps	
Data Rate	Data Rate			1.063		0000	
Electrical Chara	acteristics						
Parameter Transmitter	r	Symbol	Min.	Тур.	Max.	Unit	Note
LVPECL Inpu	LVPECL Inputs (Differential)		500		2400	mVpp	AC Coupled Inputs ^{*(Note1)}
Input Impeo (Differentia		Zin	85	100	115	ohms	Rin > 100 kohms @ DC
TX Dis	Disable		2		Vcc	V	
	Enable		0		0.8		
TX_FAULT	Fault Normal		2 0		Vcc+0.3 0.5	V	
Receiver LVPECL Outputs (Differential)		Vout	370		2000	mVpp	AC Coupled Outputs ^{*(Note1)}
Output Impedance (Differential)		Zout	85	100	115	ohms	Outputs
TX_Disable Assert Time		t_off			10	us	
RX_LOS	LOS Normal		2 0		Vcc+0.3 0.8	V	
MOD_DEF (0.2)		VoH VoL	2.5 0		0.5	V	With Serial ID

Notes:

1. LVPECL logic, internally AC coupled.

Optical Characteristics

Parameter 9μm Core Diameter SMF Data Rate Transmitter	Symbol L	Min.	Typ. 160 1.063/1.25	Max.	Unit km Gbps
Center Wavelength Spectral Width (-20dB) Side Mode Suppression Ratic Average Output Power* (Note1)	λ _c Δλ SMSR Pout	1500 30 +3	1550	1580 1 +7	nm nm dB dBm
Extinction Ratio ^{*(Note2)} Rise/Fall Time (20% to 80%) Total Jitter ^{*(Note2)} Output Optical Eye	ER tr/tf TJ Compliant with	9 IEEE 80	2.3	0.26 0.43	dB ns UI
Pout@TX Disable Asserted Receiver Center Wavelength Receiver Sensitivity* ^(Note3)	Pout λ _c Pmin	1260		-45 1600 -34	dBm nm dBm
Receiver Overload LOS De-Assert LOS Assert LOS Hysteresis	Pmax LOSD LOSA	-10 -45 0.5		-38	dBm dBm dBm dB

Notes:

- 1. Output power is measured by coupling into a 9/125 mm multi-mode fiber.
- 2. Filtered, measured with a PRBS 2⁷-1 test pattern @1250Mbps.
- 3. Minimum average optical power is measured at BER less than 1E-12, with 2^7-1 PRBS and ER=9 dB

Digital Diagnostic Functions

Parameter	Range	Unit	Accuracy	Calibration
Temperature	-40 to 85	°C	±3°C	Internal / External
Voltage	3.0 to 3.6	V	±3%	Internal / External
Bias Current	10 to 80	mA	±10%	Internal / External
TX Power	3 to 7	dBm	±3dB	Internal / External
RX Power	-34 to -10	dBm	±3dB	Internal / External

Ordering Information -

Product Name	Product Description
SFP-AG-LP-51-160	SFP Plug-in, 1Gbps, 160km, TX=1550/RX wide, on two single mode fibers, LC/PC Blue,
	with DDM, Commercial Temp
SFP-AGLP-51-160A	SFP Plug-in, 1Gbps, 160km, TX=1550/RX wide, on two single mode fibers, LC/PC Blue,
	with DDM, Industrial Temp

Contact Information -

Ascent Communication Technology Ltd

AUSTRALIA

140 William Street, Melbourne Victoria 3000, AUSTRALIA

Phone: +61-3-8691 2902

CHINA

Unit 1933, 600 Luban Road 200023, Shanghai, CHINA Phone: +86-21-60232616

EUROPE

Pfarrer-Bensheimer-Strasse 7a 55129 Mainz, GERMANY Phone: +49 (0) 6136 926 3246

Hong Kong SAR

Unit 9, 12th Floor, Wing Tuck Commercial Centre 177 Wing Lok Street, Sheung Wan, Hong Kong SAR Phone: +852-2851 4722

USA

2710 Thomes Ave Cheyenne, WY 82001, USA Phone: +1-203 816 5188

VIETNAM

11th Floor, Hoa Binh Office Tower 106 Hoang Quoc Viet Street, Nghia Do Ward Cau Giay District, Hanoi 10649, VIETNAM Phone: +84-24-37955917

WEB: <u>www.ascentcomtec.com</u>

EMAIL: sales@ascentcomtec.com

Specifications and product availability are subject to change without notice. Copyright © 2024 Ascent Communication Technology Limited. All rights reserved. Ver. ACT_SFP-AG-LP-51-160_Datasheet_V1b_Sep_2023